Pro- and macroglycogenolysis during repeated exercise: roles of glycogen content and phosphorylase activation.
نویسندگان
چکیده
This study examined the relationship between preexercise muscle glycogen content and glycogen utilization in two physiological pools, pro- (PG) and macroglycogen (MG). Male subjects (n = 6) completed an exercise and dietary protocol before the experiment that resulted in one leg with high glycogen (HL) and one with low glycogen (LL). Preexercise PG levels were 312 +/- 29 and 208 +/- 31 glucosyl units/kg dry wt (dw) (P < or = 0.05) in the HL and LL, respectively, and the corresponding values for MG were 125 +/- 37 and 89 +/- 43 mmol glucosyl units/kg dw (P < or = 0.05). Subjects then performed two 90-s exercise bouts at 130% maximal oxygen uptake separated by a 10-min rest period. Biopsies were obtained at rest and after each exercise bout. Preexercise glycogen concentration was correlated to net glycogenolysis for both PG and MG for bout 1 and bouts 1 and 2 (r < or = 0.60). In bout 1, there was no difference in the rate of PG or MG catabolism between HL and LL despite a 26% increase (P < or = 0.05) in glycogen phosphorylase transformation (phos a %) in the HL. In the second bout, more PG was catabolized in the HL vs. LL (38 +/- 9 vs. 9 +/- 6 mmol glucosyl units. kg dw(-1). min(-1)) (P < or = 0.05) with no difference between legs in phos a %. phos a % was increased in HL vs. LL but does not necessarily increase glycogenolysis in either PG or MG. Despite both legs performing the same exercise and having identical metabolic demands, the HL catabolized 2.3 (P < or = 0.05) times more PG and 1.5 (P < or = 0.05) times more MG vs. LL in bouts 1 and 2, indicating that preexercise glycogen concentration is a regulator of glycogenolysis.
منابع مشابه
Hormonal regulation of glycogen metabolism in white muscle slices from rainbow trout (Oncorhynchus mykiss Walbaum).
To test the hypothesis that cortisol and epinephrine have direct regulatory roles in muscle glycogen metabolism and to determine what those roles might be, we developed an in vitro white muscle slice preparation from rainbow trout (Oncorhynchus mykiss Walbaum). In the absence of hormones, glycogen-depleted muscle slices obtained from exercised trout were capable of significant glycogen synthesi...
متن کاملRegulation of glycogen synthase and phosphorylase during recovery from high-intensity exercise in the rat.
The aim of this study was to determine the role of the phosphorylation state of glycogen synthase and glycogen phosphorylase in the regulation of muscle glycogen repletion in fasted animals recovering from high-intensity exercise. Groups of rats were swum to exhaustion and allowed to recover for up to 120 min without access to food. Swimming to exhaustion caused substantial glycogen breakdown a...
متن کاملPost-exercise muscle glycogen repletion in the extreme: effect of food absence and active recovery.
Glycogen plays a major role in supporting the energy demands of skeletal muscles during high intensity exercise. Despite its importance, the amount of glycogen stored in skeletal muscles is so small that a large fraction of it can be depleted in response to a single bout of high intensity exercise. For this reason, it is generally recommended to ingest food after exercise to replenish rapidly m...
متن کاملIncreased potency and efficacy of combined phosphorylase inactivation and glucokinase activation in control of hepatocyte glycogen metabolism.
Glucokinase and phosphorylase both have a high control strength over hepatocyte glycogen metabolism and are potential therapeutic targets for type 2 diabetes. We tested whether combined phosphorylase inactivation and glucokinase activation is a more effective strategy for controlling hepatic glycogen metabolism than single-site targeting. Activation of glucokinase by enzyme overexpression combi...
متن کاملAENDO November 40/5
Parolin, Michelle L., Alan Chesley, Mark P. Matsos, Lawrence L. Spriet, Norman L. Jones, and George J. F. Heigenhauser. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am. J. Physiol. 277 (Endocrinol. Metab. 40): E890–E900, 1999.—The time course for the activation of glycogen phosphorylase (Phos) and pyruvate dehydrogenase (PDH) and their allos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 90 3 شماره
صفحات -
تاریخ انتشار 2001